
APPENDIX
IMPLEMENTATION DETAILS

The pseudocode of our method is Algo 1, and the im-
plementation details of each component are in the following
sections.

Algorithm 1 KUDA

Require: Vision-language Model M, Dynamics Model f ,
Prompt Retriever R, Point Tracker T , Language In-
struction L, Text Prompt pbase, Prompt Library P =
{(qi, obsi, ri)}

1: for high-level iteration r = 0, . . . , N − 1 do
2: Get observation s0, environment state z0 from the

top down camera
3: Propose keypoints and get the annotated image

A(s0), use retriever R to get the top-k examples
R({(qi, obsi, ri)})

4: Prompt the VLM to obtain the target specifications
TS = M(pbase, A(s0),R({(qi, obsi, ri)}))

5: for low-level iteration t = 0, . . . , n actions − 1 do
6: Obtain objective C(z|L) =

∑
i∈TS

√
(oi − pi)2

from target specifications.
7: Optimize C(z|L) with f to get the action at
8: Execute at on the robot
9: Obtain environment state zt+1 and use tracking

module T to update target specifications.
10: end for
11: end for

A. Dynamics Models

We utilize two types of neural dynamics models: the
graph-based neural dynamics model and the state-based
neural dynamics model. The graph-based model follows
the framework presented in [1]. Specifically, an object is
represented as a graph with vertices O = {oi}, where each
vertex represents a particle, and edges R = {rk}, which
capture the relationships between particles. Each vertex oi
is defined as oi = ⟨xi, a

o
i ⟩, where xi = ⟨qi, q̇i⟩ represents

the state of particle i (including its position qi and velocity
q̇i), and aoi denotes its attributes. Each edge rk is defined as
rk = ⟨uk, vk, a

r
k⟩, where uk and vk denote the receiver and

sender vertices, respectively, and ark represents the type and
attributes of the relationship.

At each time step t, we employ two encoders, f enc
O and

f enc
R , to compute latent embeddings for the vertices and

edges, respectively:

h0
oi,t = f enc

O (oi,t), h0
rk,t

= f enc
R (rk,t). (1)

Next, an edge propagation network f prop
R and a vertex

propagation network f prop
O are used to iteratively update

the embeddings of edges and vertices through multi-step
message passing. For l = 0, 1, . . . , L − 1, the updates are

computed as:

hl+1
rk,t

= f prop
R (hl

uk,t
, hl

vk,t
), (2)

hl+1
oi,t = f prop

O

hl
oi,t,

∑
j∈N (oi,t)

hl+1
rk,t

 . (3)

where N (oi,t) denotes the set of edge indices where vertex
i acts as the receiver at time t, and L is the total number of
message passing steps.

Finally, a vertex decoder f dec
O is employed to predict the

state of the object at the next time step, given the updated
vertex embedding:

ôi,t+1 = f dec
O (hL

oi,t). (4)

To construct the graph {O,R} in our approach, we utilize
a top-down RGB-D camera to capture observations and
utilize GroundingSAM [2] to segment objects and extract
their corresponding point clouds. The farthest point sampling
method is then applied with a fixed pointwise distance
threshold r to generate particles representing the objects. For
the two types of pushers used in our study, we represent the
cylinder stick with a single particle and the board pusher with
five particles. Edges between particles are established based
on a spatial distance threshold d. In our implementation, we
set r = 0.02 m and d = 0.06 m.

The data generation for our graph-based dynamics model
training is achieved by NVIDIA FleX [1, 3], a position-
based simulation framework tailored for modeling inter-
actions involving various materials, including deformable
objects. For each material, we collected a dataset comprising
1000 episodes, where each episode includes 5 randomly
generated robot-object interactions. For the rope material,
we randomize the length and stiffness of the rope, and for
the granular material, we randomize the granular size, to
enable our model to handle objects with different physical
parameters. (You can see this in our demo, we used different
kinds of rope and granular pieces.) To improve robustness
during training, we incorporated rotational randomness into
the simulation. Furthermore, our model is designed to be
translation-equivariant, relying solely on velocity and posi-
tion difference information within the network.

For T-shaped block in our work, we use four keypoints’
x, y positions to represent T’s state, which contains the top
center point tc, top right point tr, top left point tl, and
bottom center point bt when T is upright. At time t, the
state-based neural network receives (tct, trt, tlt, btt, pt, a)
as input, where pt is the current pusher position, and a
represents the action of the pusher. Then the network will
predict (tct+1, trt+1, tlt+1, btt+1, pt+1) for the next time
step.

To obtain the keypoints of the T-shaped block in the real
world, we first use the same pipeline as in the graph-based
neural dynamics model to extract the point cloud of the T-
shaped block. We then apply the Iterative Closest Point (ICP)
algorithm [4] to estimate the block’s 6D pose and calculate
the positions of its keypoints. The T-shaped block used in



our experiments measures 12 cm in height and 12 cm in
width, with both the stem and bar having a width of 3 cm.

In our experiments, we employ different end effectors
tailored to specific task requirements. The board pusher, used
for manipulating cubes and granular pieces, has dimensions
of 10 cm × 0.5 cm on the horizontal plane, whereas the
cylinder pusher, designed for interacting with ropes and T-
shaped objects, has a diameter of 1 cm.

The data generation for our state-based dynamics model
is performed using Pymunk [5], a 2D physics library for
simulating rigid body dynamics. For the T-shaped block, we
collected a dataset of 20,000 episodes, with each episode
consisting of 300 random robot-object interactions. During
both training and inference, all coordinates are transformed
into the block’s local coordinate system, making our model
both translation-equivariant and rotation-equivariant.

All training processes are performed on a Linux machine
equipped with a CPU of 32 cores and 2 NVIDIA RTX 4090
GPUs.

B. Target Specification

We demonstrate the implementation details in Section ??
here. After capturing an RGB image using the top-down
camera, we utilize SAM [6] to generate semantic masks for
all objects in the scene. The mask with the largest area, which
typically corresponds to the background, is discarded. For
each remaining mask, we apply the farthest point sampling
method with a fixed pointwise radius threshold to extract up
to eight keypoints. Additionally, the center of each mask is
included as a keypoint, as it often serves as a geometrically
representative feature.

Subsequently, we apply the farthest point sampling method
again, this time with a global radius threshold across all
keypoints, to prevent excessive clustering near the edges.
Each keypoint is marked on the original image as a red dot,
with its index displayed above the dot. Additionally, a green
dot is annotated at the center of the image and labeled as
‘C’, serving as a reference point when no other objects are
present on the table.

All annotated points include both the keypoints on the
objects and the reference points in the environment; they
are not distinguished during annotation, as the VLM can
typically recognize which points correspond to objects. We
provide the example of our text prompt to the VLM in 1.
Please see more detailed annotated image examples and text
prompts in our code repository. We ensure that examples
in the prompt library do not duplicate the objects and the
instructions in evaluation tasks.

Listing 1: Text prompt for VLM

Please describe the final state of the object(s) on
the table that satisfies the task by selecting
keypoints and writing a Python function to
specify their final positions.

The input request contains:
1. The task instruction describing what you are

required to do.

2. An image of the current table-top environment
captured from a top-down camera, overlayed with
keypoints marked as P[i].

The response should be a Python function that
describes the final spatial relationships
between the keypoints of the object(s) you want
to manipulate, and some other keypoints in the
image.

The relationship is described by adding a 3D vector
to the reference keypoint. For example, if P[i
], P[j] are two keypoints on the object, and P[
a], P[b] are two other keypoints for reference,
the function could be:

def keypoint_specification():
p_i = p_a + [5, 0, 0]
p_j = p_b + [0, 7, 0]
return p_i, p_j

Imagine what the object(s) should finally look like
after the task is completed, and select proper
keypoints and describe their positions by
referring to the near keypoints.

Note:
- x is left to right, y is bottom to top, z is from

inside the image to outside the image, the
unit is in cm.

- Please do not use variables in the 3D vector,
follow the format p_i = p_a + [dx, dy, dz]. If
there are no proper reference points on the
table, you can also use p_i = [dx, dy, dz],
while the origin is the center of the image,
denoted as C.

- After your specification, a motion planner will
match the chosen keypoints to their targets
following an MSE loss.

- You can just specify several necessary keypoints
to determine a pose instead of all the
keypoints on the object(s) to make things
easier.

- Here are the sizes of some possible items: the
side length of the cube is 3cm, the L shape is
9cm in width and 6cm in height, the rope is 40
cm in length.

- Mention not to specify points that are not
present in the image.

- If you think the task has been done, just return
"Done."

Next I will show you some examples:

C. Dynamics Planning and Two Level Closed-loop Control

After projecting the target specifications into 3D space,
as described in Target Specification, and obtaining the cost
function, we apply the MPPI algorithm [7] to determine the
next action. Specifically, starting from the initial environment
state z0, we iteratively sample actions {ai}Ti=0 from the
action space, where T represents the look-ahead horizon. The
dynamics model is then used to predict the outcome of each
trajectory. Using the cost function, we calculate the weight
of each trajectory and synthesize these trajectories to derive
the final action sequence ai that minimizes the cost function.
In our setup, each action is a push along a straight line, with
the starting point within the workspace and a length of no
more than 20 cm.

To achieve closed-loop control at the dynamics planning



level, we record a video of each action using a side camera.
We then input all object particles, including keypoints from
the target specifications, along with the recorded video into
SpatialTracker [8] to obtain the positions of the tracked
particles after each action. However, we observed that the
tracked particles exhibit some errors, similar to the prediction
errors from the dynamics model, making them unsuitable for
the next optimization iteration. To address this, we update
the target specifications by resampling the particles from
the objects after each action. The tracked keypoints are then
calibrated to their nearest neighbors among the newly sam-
pled particles, and the target specifications and cost function
are updated accordingly. Our experiment results demonstrate
that this method effectively preserves the stability of the cost
function.

To achieve closed-loop control at the VLM level, after
a certain number of actions, we terminate the optimization
process and update the current observation along with the
language instruction to prompt the VLM in the next loop,
generating a new target specification. Experimental results
indicate that this method is particularly effective in under-
specified tasks, where the number of keypoints is insufficient
to accurately define a target for the objects. Additionally, it
helps correct instances where the VLM provides incorrect
target specifications.

REFERENCES

[1] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Tor-
ralba, “Learning particle dynamics for manipulating rigid
bodies, deformable objects, and fluids,” in ICLR, 2019.

[2] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen,
X. Huang, Y. Chen, F. Yan, et al., “Grounded sam:
Assembling open-world models for diverse visual tasks,”
arXiv preprint arXiv:2401.14159, 2024.

[3] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim,
“Unified particle physics for real-time applications,”
ACM Transactions on Graphics (TOG), vol. 33, no. 4,
p. 104, 2014.

[4] S. Rusinkiewicz and M. Levoy, “Efficient variants of
the icp algorithm,” in Proceedings Third International
Conference on 3-D Digital Imaging and Modeling, 2001,
pp. 145–152.

[5] V. Blomqvist, “Pymunk,” http://www.pymunk.org/,
2022.

[6] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-
Y. Lo, et al., “Segment anything,” in Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 4015–4026.

[7] G. Williams, A. Aldrich, and E. Theodorou, “Model
predictive path integral control using covariance variable
importance sampling,” arXiv preprint arXiv:1509.01149,
2015.

[8] Y. Xiao, Q. Wang, S. Zhang, N. Xue, S. Peng, Y. Shen,
and X. Zhou, “Spatialtracker: Tracking any 2d pixels in
3d space,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2024, pp.
20 406–20 417.

http://www.pymunk.org/

	Dynamics Models
	Target Specification
	Dynamics Planning and Two Level Closed-loop Control

